Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Statistical correlation of spectroscopic analysis and enzymatic hydrolysis of poplar samples.

Identifieur interne : 003C70 ( Main/Exploration ); précédent : 003C69; suivant : 003C71

Statistical correlation of spectroscopic analysis and enzymatic hydrolysis of poplar samples.

Auteurs : Lizbeth Laureano-Perez [États-Unis] ; Bruce E. Dale ; Li Zhu ; Jonathan P. O'Dwyer ; Mark Holtzapple

Source :

RBID : pubmed:16739968

Descripteurs français

English descriptors

Abstract

Spectroscopic characterization of poplar wood samples with different crystallinity indices, lignin contents, and acetyl contents was performed to determine changes in the biomass spectra and the effects of these changes on the hydrolysis yield. The spectroscopic methods used were X-ray diffraction for determining cellulose crystallinity (CrI), diffuse reflectance infrared (DRIFT) for changes in C-C and C-O bonds, and fluorescence to determine lignin content. Raman spectroscopy was also used to determine its effectiveness in the determination of crystallinity and C-C and C-O bond changes in the biomass as a complement to better-known methods. Changes in spectral characteristics and crystallinity were statistically correlated with enzymatic hydrolysis results to identify and better understand the fundamental features of biomass that influence enzymatic conversion to monomeric sugars. In addition, the different spectroscopic methods were evaluated separately to determine the minimum amount of spectroscopic data needed to obtain accurate predictions. The principal component regression (PCR) model with only the DRIFT data gives the best correlation and prediction for both initial rate of hydrolysis and also the 72-h hydrolysis yield. The factor that most affects both the initial rate and the 72-h conversion is the O-H bond content of the sample, which directly relates to the breakage of structural carbohydrates into smaller molecules.

DOI: 10.1021/bp050284x
PubMed: 16739968


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Statistical correlation of spectroscopic analysis and enzymatic hydrolysis of poplar samples.</title>
<author>
<name sortKey="Laureano Perez, Lizbeth" sort="Laureano Perez, Lizbeth" uniqKey="Laureano Perez L" first="Lizbeth" last="Laureano-Perez">Lizbeth Laureano-Perez</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dale, Bruce E" sort="Dale, Bruce E" uniqKey="Dale B" first="Bruce E" last="Dale">Bruce E. Dale</name>
</author>
<author>
<name sortKey="Zhu, Li" sort="Zhu, Li" uniqKey="Zhu L" first="Li" last="Zhu">Li Zhu</name>
</author>
<author>
<name sortKey="O Dwyer, Jonathan P" sort="O Dwyer, Jonathan P" uniqKey="O Dwyer J" first="Jonathan P" last="O'Dwyer">Jonathan P. O'Dwyer</name>
</author>
<author>
<name sortKey="Holtzapple, Mark" sort="Holtzapple, Mark" uniqKey="Holtzapple M" first="Mark" last="Holtzapple">Mark Holtzapple</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006 May-Jun</date>
<idno type="RBID">pubmed:16739968</idno>
<idno type="pmid">16739968</idno>
<idno type="doi">10.1021/bp050284x</idno>
<idno type="wicri:Area/Main/Corpus">003D95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003D95</idno>
<idno type="wicri:Area/Main/Curation">003D95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003D95</idno>
<idno type="wicri:Area/Main/Exploration">003D95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Statistical correlation of spectroscopic analysis and enzymatic hydrolysis of poplar samples.</title>
<author>
<name sortKey="Laureano Perez, Lizbeth" sort="Laureano Perez, Lizbeth" uniqKey="Laureano Perez L" first="Lizbeth" last="Laureano-Perez">Lizbeth Laureano-Perez</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dale, Bruce E" sort="Dale, Bruce E" uniqKey="Dale B" first="Bruce E" last="Dale">Bruce E. Dale</name>
</author>
<author>
<name sortKey="Zhu, Li" sort="Zhu, Li" uniqKey="Zhu L" first="Li" last="Zhu">Li Zhu</name>
</author>
<author>
<name sortKey="O Dwyer, Jonathan P" sort="O Dwyer, Jonathan P" uniqKey="O Dwyer J" first="Jonathan P" last="O'Dwyer">Jonathan P. O'Dwyer</name>
</author>
<author>
<name sortKey="Holtzapple, Mark" sort="Holtzapple, Mark" uniqKey="Holtzapple M" first="Mark" last="Holtzapple">Mark Holtzapple</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology progress</title>
<idno type="ISSN">8756-7938</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cellulose (analysis)</term>
<term>Crystallization (MeSH)</term>
<term>Enzymes (chemistry)</term>
<term>Hydrolysis (MeSH)</term>
<term>Lignin (analysis)</term>
<term>Models, Statistical (MeSH)</term>
<term>Populus (chemistry)</term>
<term>Sensitivity and Specificity (MeSH)</term>
<term>Spectrometry, Fluorescence (methods)</term>
<term>Spectrometry, Fluorescence (statistics & numerical data)</term>
<term>Spectroscopy, Fourier Transform Infrared (methods)</term>
<term>Spectroscopy, Fourier Transform Infrared (statistics & numerical data)</term>
<term>Spectrum Analysis, Raman (methods)</term>
<term>Substrate Specificity (MeSH)</term>
<term>X-Ray Diffraction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse spectrale Raman (méthodes)</term>
<term>Cellulose (analyse)</term>
<term>Cristallisation (MeSH)</term>
<term>Diffraction des rayons X (MeSH)</term>
<term>Enzymes (composition chimique)</term>
<term>Hydrolyse (MeSH)</term>
<term>Lignine (analyse)</term>
<term>Modèles statistiques (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Sensibilité et spécificité (MeSH)</term>
<term>Spectrométrie de fluorescence (méthodes)</term>
<term>Spectrométrie de fluorescence (statistiques et données numériques)</term>
<term>Spectroscopie infrarouge à transformée de Fourier (méthodes)</term>
<term>Spectroscopie infrarouge à transformée de Fourier (statistiques et données numériques)</term>
<term>Spécificité du substrat (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Cellulose</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Enzymes</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Cellulose</term>
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Enzymes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Spectrometry, Fluorescence</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
<term>Spectrum Analysis, Raman</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse spectrale Raman</term>
<term>Spectrométrie de fluorescence</term>
<term>Spectroscopie infrarouge à transformée de Fourier</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Spectrometry, Fluorescence</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
</keywords>
<keywords scheme="MESH" qualifier="statistiques et données numériques" xml:lang="fr">
<term>Spectrométrie de fluorescence</term>
<term>Spectroscopie infrarouge à transformée de Fourier</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallization</term>
<term>Hydrolysis</term>
<term>Models, Statistical</term>
<term>Sensitivity and Specificity</term>
<term>Substrate Specificity</term>
<term>X-Ray Diffraction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallisation</term>
<term>Diffraction des rayons X</term>
<term>Hydrolyse</term>
<term>Modèles statistiques</term>
<term>Sensibilité et spécificité</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Spectroscopic characterization of poplar wood samples with different crystallinity indices, lignin contents, and acetyl contents was performed to determine changes in the biomass spectra and the effects of these changes on the hydrolysis yield. The spectroscopic methods used were X-ray diffraction for determining cellulose crystallinity (CrI), diffuse reflectance infrared (DRIFT) for changes in C-C and C-O bonds, and fluorescence to determine lignin content. Raman spectroscopy was also used to determine its effectiveness in the determination of crystallinity and C-C and C-O bond changes in the biomass as a complement to better-known methods. Changes in spectral characteristics and crystallinity were statistically correlated with enzymatic hydrolysis results to identify and better understand the fundamental features of biomass that influence enzymatic conversion to monomeric sugars. In addition, the different spectroscopic methods were evaluated separately to determine the minimum amount of spectroscopic data needed to obtain accurate predictions. The principal component regression (PCR) model with only the DRIFT data gives the best correlation and prediction for both initial rate of hydrolysis and also the 72-h hydrolysis yield. The factor that most affects both the initial rate and the 72-h conversion is the O-H bond content of the sample, which directly relates to the breakage of structural carbohydrates into smaller molecules.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16739968</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>08</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2007</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">8756-7938</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>22</Volume>
<Issue>3</Issue>
<PubDate>
<MedlineDate>2006 May-Jun</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Biotechnology progress</Title>
<ISOAbbreviation>Biotechnol Prog</ISOAbbreviation>
</Journal>
<ArticleTitle>Statistical correlation of spectroscopic analysis and enzymatic hydrolysis of poplar samples.</ArticleTitle>
<Pagination>
<MedlinePgn>835-41</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Spectroscopic characterization of poplar wood samples with different crystallinity indices, lignin contents, and acetyl contents was performed to determine changes in the biomass spectra and the effects of these changes on the hydrolysis yield. The spectroscopic methods used were X-ray diffraction for determining cellulose crystallinity (CrI), diffuse reflectance infrared (DRIFT) for changes in C-C and C-O bonds, and fluorescence to determine lignin content. Raman spectroscopy was also used to determine its effectiveness in the determination of crystallinity and C-C and C-O bond changes in the biomass as a complement to better-known methods. Changes in spectral characteristics and crystallinity were statistically correlated with enzymatic hydrolysis results to identify and better understand the fundamental features of biomass that influence enzymatic conversion to monomeric sugars. In addition, the different spectroscopic methods were evaluated separately to determine the minimum amount of spectroscopic data needed to obtain accurate predictions. The principal component regression (PCR) model with only the DRIFT data gives the best correlation and prediction for both initial rate of hydrolysis and also the 72-h hydrolysis yield. The factor that most affects both the initial rate and the 72-h conversion is the O-H bond content of the sample, which directly relates to the breakage of structural carbohydrates into smaller molecules.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Laureano-Perez</LastName>
<ForeName>Lizbeth</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dale</LastName>
<ForeName>Bruce E</ForeName>
<Initials>BE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>O'Dwyer</LastName>
<ForeName>Jonathan P</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holtzapple</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biotechnol Prog</MedlineTA>
<NlmUniqueID>8506292</NlmUniqueID>
<ISSNLinking>1520-6033</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004798">Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Biotechnol Prog. 2007 Mar-Apr;23(2):516</RefSource>
<Note>Zhu, Li [added]</Note>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004798" MajorTopicYN="N">Enzymes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="Y">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012680" MajorTopicYN="N">Sensitivity and Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013050" MajorTopicYN="N">Spectrometry, Fluorescence</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017550" MajorTopicYN="N">Spectroscopy, Fourier Transform Infrared</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013059" MajorTopicYN="N">Spectrum Analysis, Raman</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014961" MajorTopicYN="N">X-Ray Diffraction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16739968</ArticleId>
<ArticleId IdType="doi">10.1021/bp050284x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Dale, Bruce E" sort="Dale, Bruce E" uniqKey="Dale B" first="Bruce E" last="Dale">Bruce E. Dale</name>
<name sortKey="Holtzapple, Mark" sort="Holtzapple, Mark" uniqKey="Holtzapple M" first="Mark" last="Holtzapple">Mark Holtzapple</name>
<name sortKey="O Dwyer, Jonathan P" sort="O Dwyer, Jonathan P" uniqKey="O Dwyer J" first="Jonathan P" last="O'Dwyer">Jonathan P. O'Dwyer</name>
<name sortKey="Zhu, Li" sort="Zhu, Li" uniqKey="Zhu L" first="Li" last="Zhu">Li Zhu</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Laureano Perez, Lizbeth" sort="Laureano Perez, Lizbeth" uniqKey="Laureano Perez L" first="Lizbeth" last="Laureano-Perez">Lizbeth Laureano-Perez</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003C70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003C70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16739968
   |texte=   Statistical correlation of spectroscopic analysis and enzymatic hydrolysis of poplar samples.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16739968" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020